Entropy¶
humans are temporary pockets of low entropy
the universe - chapter 1 page 42
Classical Thermodynamics
- Entropy Change for a Reversible Process: $$ \Delta S = \int \frac{dq_{rev}}{T} $$
- Entropy of an Ideal Gas: $$ S = nR \ln \frac{VT3/2}{n_0V_0T_0 + S_0 $$}
Statistical Mechanics
- Boltzmann's Entropy Formula: $$ S = k_B \ln W $$
- Gibbs Entropy Formula: $$ S = -k_B \sum_i p_i \ln p_i $$
Information Theory
- Shannon Entropy: $$ H(X) = -\sum_i p(x_i) \log_2 p(x_i) $$
turds¶
Entropy of Human Feces¶
We can estimate the entropy (( S )) of feces using the Boltzmann entropy formula:
$$ S = k_B \ln(\Omega) $$
Where: - ( S ) = entropy (in Joules per Kelvin) - ( k_B ) = Boltzmann constant (( 1.38 \times 10^{-23} \, \text{J/K} )) - ( \Omega ) = number of accessible microstates for the system
Step-by-Step Calculation:¶
- Assume a simplified system:
- Feces is made up of ( N ) particles (e.g., molecules or atoms).
- Each particle can occupy ( m ) possible states (e.g., positions, energy levels).
-
The total number of microstates is given by: $$ \Omega = m^N $$
-
Insert values:
- Let ( N ) = ( 10^{23} ) (approximate number of molecules in 1 kg of feces).
- Let ( m ) = ( 10^6 ) (approximate number of possible states per molecule, based on chemical diversity).
Substituting into ( \Omega ): $$ \Omega = (106) $$}
- Compute the entropy: Taking the natural logarithm: $$ \ln(\Omega) = N \ln(m) = 10^{23} \ln(10^6) $$
Simplify: $$ \ln(\Omega) = 10^{23} \cdot 6 \ln(10) = 10^{23} \cdot 13.8155 $$
Substituting back into the entropy formula: $$ S = k_B \cdot \ln(\Omega) = (1.38 \times 10^{-23}) \cdot (10^{23} \cdot 13.8155) $$
Simplify: $$ S = 1.38 \cdot 13.8155 \approx 19.06 \, \text{J/K} $$
Final Result:¶
The estimated entropy of 1 kg of feces is approximately:
$$ S \approx 19.06 \, \text{J/K} $$
This is a rough estimation, assuming uniform particle distribution and simplified chemical states.